
!

I
I

I
I
I

I
i

i
I

I
I
i

I

I
I
I

I

I

FTAS/TR-66-I I

THE KELVIN-HELMHOLTZ INSTABILITY WITH

ARBITRARILY ORIENTED BODY FORCE

by

Robert G. Hantman and Simon Ostrach

June, 1966



This thesis is a study of the interracial stability of two

parallel superposed inviscid streams of fluid. The problem is a

generalization of the Kelvin-Helrnholtz model, with the new feature

being the addition of a component of the body force tangential to the

flow direction. The results are applied to the stability of the

molten liquid-gas interface on an ablating re-entry body.

Using a linearized normal mode approach for the

stability analysis, a dispersion equation relating the complex

phase velocity to the wave number of the assumed disturbances is

found. Explicit dependence on the density ratio, relative inter-

face velocity, surface tension, and the body force components is

expressed in this result.

The dispersion relation is first studied for the case with

a zero tangential body force component in order to gain insight

into other mechanisms affecting the stability of the system. For

the complete problem, the tangential component is found to be

always destabilizing. The perpendicular component is destabilizing

or stabilizing depending on whether it is directed away from or

toward the heavier medium. The relative interface velocity

introduces a mechanism which acts to destabilize the flow

independently of other effects.
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CHAPTER I

INTRODUCTION

A. Motivation and Previous Work

In recent years the problem of providing heat protection

for re-entry vehicles has become of great importance. This has

led to various investigations of ablation processes and the related

flow and heat transfer features. The study of the ablation of skin

materials which melt before vaporizing has been a frequently

examined problem. Various physical mechanisms such as high

heat-transfer rates, large deceleration forces, and ablative liquid

detachment are involved in such ablation problems. In studying

the effects of these mechanisms it becomes important to analyze

the stability of the molten ablative liquid-gas interface which is

subject to the extreme conditions encountered on re-entry into the

Earth's atmosphere. It is this interfacial stability problem that

will be of concern in the present paper.

Most analyses which have dealt with such molten layers

have been limited to the stagnation region of the re-entry body.

Several reasons may be pointed out for this restriction. In the

stagnation region, the most severe heat transfer processes have

been shown to occur, [1 ] . Also, the deceleration force acts

-1-



I
II

I

I
I

I
I

I
'I
I

I
I
I

I

I
I
I

-2-

perpendicularly with a destabilizing orientation. It appears that

only Cheng [2 ] has dealt with the stability problem away from the

stagnation point, where a component of the deceleration force

parallel to the interface plays a role.

Associated with these two possible regions of interest

are two classically studied interfacial instability problems:

i) the Rayleigh-Taylor instability,

2) the Kelvin-Helrnholtz instability.

The Rayleigh-Taylor problem generally refers to the

stability of two superposed viscous incompressible fluids, initially

at rest, subject to both surface tension and to a single body force

component normal to the interface. It has been shown by various

investigators (Taylor [3 ] , Bellman and Pennington [4] , Reid [5 ] )

that for unbounded fluids the configuration is stable so long as the

body force is directed toward the denser medium. If the body force

direction is reversed, the system is unstable, regardless of the

viscous effects. The surface tension serves to introduce a cutoff

wave number above which all disturbances are damped out. Vis-

cosity serves only the role of lowering the amplification rates of

the disturbances, but it can never completely stabilize this
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situation. The cutoff wave number is independent of the role of

viscosity depending directly on the magnitude of the body force

and the density difference of the fluids and inversely on the surface

tension coefficient. (See equation (4-4). }

Thus instabilities of the type excited primarily by the

body force normal to the two fluid interface, as described here,

are called Rayleigh-Taylor instabilities. It is this mechanism

which is the dominant destabilizing influence in the stagnation

region of a re-entry body. (See Figure 1. )

The Kelvin-Helmholtz problem generally refers to the

stability of two superposed incompressible inviscid parallel flows,

subject to surface tension at the interface and to the normal com-

ponent of the body force alone. The effect of this body force on

the system is the same as in the Rayleigh-Taylor case, the new

feature here being the relative velocity of the two streams. This

is the physical mechanism usually attributed to the creation of

ocean waves by wind, although Miles [6 ] has recently shown this

claim to be invalid.

In de scribing the Kelvin-Helmholtz instability mecha:-

nism, which is absent of any viscous effects, the interface now
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represents a discontinuity surface for the velocities of the two

fluids, and, as such, may be interpreted as a vortex sheet. Using

an energy balance equation across the interface, Cheng [7] has

shown that the interfacial vortex region may be visualized as a

thin viscous region within which there is a large velocity gradient.

This large gradient gives rise to the Reynolds stress excitation

necessary for such interracial instabilities. Thus the vortex

sheet acts to create a seemingly artificial energy source which is

a representation of the physical process of viscous excitation

through the Reynolds stress. (Such replacement of a viscous

shear layer by a vortex sheet is not uncommon in fluid mechanics.

Recall that a great deal of three-dimensional airfoil theory, such

as Prandtl's lifting-line theory, depends initially on this very

representation. )

Thus interracial instabilities of superposed fluids

excited primarily by the viscous action through Reynolds stresses

are termed Helrnholtz instabilities (See Cheng [7 ] .). It should be

added at this point that in the study of the stability of viscous

boundary layer flows, the term Tollmien-Schlichting instability

is associated with the instability occurring as a result of ampli-

fication by viscosity of infinitessimal disturbances within the
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layer. Thus, both the Helmholtz and the Tollmien-Schlichting

instabilities are created by the transfer of energy from the main

flow to the disturbance flow through the action of viscous stresses.

However, in considering the instabilities which may occur in a

system of viscous superposed flows, these two mechanisms may

play independent roles. For example, a Tollmien-Schlichting

instability may arise within a viscous layer, and consequently lead

to an instability of the interface. Such a break-up of the interface

would not be due to the Helmholtz mechanism, but rather to a

transfer of energy as a result of the Tollmien-Schlichting

instability. To the author's knowledge, no stability analysis

related to viscous superpose:d flows has explicitly distinguished

these two instability mechanisms and their relative importance.

The aim of such a distinction would be to determine which

instability is most likely to occur first, and hence which is the

dominant mechanism in the flow break-up.

Ostrach and Koestel [8 ] have pointed out that experi-

ments indicate that an interracial instability will usually precede

a Tollmien-Schlichting instability within a fluid layer. It has been

shown that the interfacial instability may even occur if the fluid

layers are both in laminar motion. If such a result could be
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verified in general, then examination of the instability of the inter-

face could be made independently of knowledge of the stability of

the fluid layers. Although such verification has not yet been

achieved, many analyses (e.g., [9] , [10] , [11] , [12] ) do

assume the instability of the interface to be the dominant mecha-

nism in destroying the given flow pattern.

Therefore, if the Kelvin-Helmholtz instability is now

considered as a special case of the Helmholtz instability in the

limit of zero viscosity, :then one may state that the Kelvin-

Helmholtz model is a representation of a case when the interracial

instability precedes any instability in the fluid layers. Since then

viscosity within the layers would no longer be the dominant

destabilizing influence, one may assume the fluids to be inviscid,

and, as discussed, represent the viscous shear layer separating

the flows by a vortex sheet. This argument appears to be a proper

justification for the inviscid Kelvin-Helrnholtz model. Of course,

it should be realized that the stability analysis ensuing from this

model will yield somewhat pessimistic results. This latter fact

is due to the omission of the possible stabilizing influence of

viscosity at the interface (see Cheng [2] ), and for short waves

(Miles [16] ).
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Thus the Kelvin-Helrnholtz model may be characterized

by the fixed relative velocity (at the interface) of the superposed

streams. It will be sho_ that it is the magnitude of this relative

velocity which indicates the "strength" of the Kelvin-Helrr_holtz

instability. The effect of the body force normal to the interface is

to be interpreted as a superposition of the Rayleigh-Taylor

mechanism upon the given parallel streams.

From Figure 1, it would now appear that away from the

stagnation point the Kelvin-Helmholtz con_figuration may be a

proper model locally on a re-entry body, subject to the neglect of

viscosity. There is, however, in the present case of melting

ablation an additional factor, namely the body force gX parallel to

the interface. The magnitude of this component, as well as the

normal component gle will vary from point to point because of the

body curvature. Locally, the flow picture may be interpreted as

in Figure 2. This will be used later to describe the assumed:

model for the analysis.

Before proceeding with discussion of the stability prob-

lem relevant to the ablation study, further mention of earlier

work on the Kelvin-Helmholtz problem is of value. As discussed

above, the Kelvin-Helmholtz instability is characterized by the
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relative velocity of the two fluids as a result of the assumed jump

discontinuity in velocity at the interface. Goldstein [11 ] and

Taylor [12] both tried to improve this model by eliminating the

jump changes in both velocity and density at the interface. This

was done, still assuming inviscid fluids, by inserting transition

layers between the main flows of interest. These additional layers

allow a means for the velocity and density to change continuously

from one main stream to the other. In this way, Goldstein and

Taylor were able to show that the jump discontinuities in the

original model accentuated the instability. Again, one might

interpret these transition layers as a rough attempt to represent

the viscous shear layer which, in reality, joins the two main

flows. A similar approach was used by Drazin and Howard [14]

for a fluid with a continuously stratified density distribution.

Perhaps the most active investigator of these problems

is John W. Miles, who, in several series of articles (see

reference [15] ), has studied the various Kelvin-Helmholtz and

related problems, and their ranges of applicability. In addition

to his previously mentioned work [6] , Miles [16] has shown that

viscous effects may be significant, especially for short waves.

He [6] also has generalized the Kelvin-Helmholtz model for
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parallel shear flows by considering the heavier fluid as a viscous

medium. The body force is oriented so that the system is stable

in the Rayleigh-Taylor sense. The principal application of the

results is to the flow of a light inviscid fluid over a viscous

liquid, v._.th_- =_-_I _r_ typical of _ r_Iru!ation agreeing

well with observed results. This model also leads to the conclu-

sion that this Kelvin-Helmholtz stability is not the proper mecha-

nism for the generation of water waves at commonly observed

wind speeds. Namely, Miles finds that his generalized Kelvin-

Helrnholtz model is only good for a heavy liquid of relatively

large viscosity. It would thus appear that such a model would be

applicable to the stability of an ablative interface near the stag-

nation point, mainly because of the large viscosities of the liquid

layers involved.

With regard now to the stability problem associated

with the ablation configuration away from the stagnation point, it

can be noted that most related studies have neglected the compo-

nent of the body force gx parallel to the interface. The analyses

thus become various generalizations of the previously defined

Kelvin-Helmholtz problem. The work of Cheng [Z] appears to be

the only analysis which accounts for both body force components.
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Feldman [17 ] , for example, states that this parallel

component of the body force serves only to change the form of the

liquid film velocity profile. This implies that only the instabilities

in planes normal to the flow direction are of consequence. Thus,

in reference [17 ] Feldrnan finds the behavior of such equivalent

Rayleigh-Taylor instabilities. (It c_%n be shown that if all

gradients in the flow direction vanish, the stability analysis in

planes normal to the flow is independent of the flow velocity.

Hence, this analysis corresponds to a Rayleigh-Taylor problem. )

It will be, however, one of the purposes of this paper to show

explicitly the effect of the tangential component of the body force

on the gas-liquid interface instability. The results will then be

compared with those of Cheng [2] . The results will show

Feldrnan's contention regarding this body force component to be

incorrect.

In reference [17 ] , Feldman does point out the two

primary mechanisms which can lead to a loss of liquid through

instability of the gas-liquid interface. One is that at sufficiently

high liquid Reynolds numbers, energy can be transferred by

viscous effects from the gas stream into the liquid layer at such

a rate that liquid entrainment by the gas stream may result. The
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other mechanism is provided by the Rayleigh-Taylor instability

dominant in the stagnation region of the body. Neither of these

influences, however, account for the effect of the tangential com-

ponent of the body force downstream of the stagnation point. The

C-_'_ _4" 4-1_" _ _.._,_..... p ....... has, however, been s _ .... ,_ _I_,T an

important role in the flow characteristics. For example, Ostrach,

Goldstein, and Hamman [18 ] , in studying flow and heat transfer

characteristics of melting ablation layers, have pointed out that

in determining conditions away from the stagnation point, it is

important to include all effects of the deceleration force. Since

this force will actually oppose the downstream flow of liquid

(i. e., flow away from the stagnation point), new features may

arise. As a case in point, they have shown the conditions under

which liquid can be forced upstream and eventually accumulate at

some position away from the nose of the body. Thus the predomi-

nant role of the tangential component of the body force is

illustrated.

Further, Cheng [2] , using a stability analysis involving

an approximate energy integral approach, has found that this

tangential body force is always destabilizing in the nose region

(i. e., in the region adjacent to the stagnation point), and that in
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the transonic region of a blunt body, this component may cause an

instability (in a generalized Rayleigh-Taylor sense) more serious

than that existing in the stagnation region. Such results certainly

differ from Feldrnan's contentions, thereby making further invest-

igation of this situation worthwhile.

Several other stability analysis related to the ablation

process may be discussed. Cheng [7] also studied the Rayleigh-

Taylor problem with the same approach as he used in [2 ] ,

achieving approximate results for the maximum amplification

rate of small disturbances, as well as rederiving the previously

known aspects of the effects of surface tension and viscosity.

Feldman in [18] actually applied, to the problem of an ablating

heat shield, the results of an earlier stability analysis [19] , in

which a linear velocity profile was assumed in each fluid.

Miles [16] corrected some mathematical errors inFeldman's

work [19] that should allow the analysis to be applicable in the

limit as the gas-liquid density ratio tends to zero. Miles,

however, notes that these results still do not agree with observa-

tion.

Another related analysis by Chang and Russell [9 ]

serves as a generalization of the Kelvin-Helmholtz problem for
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parallel streams passing over an infinite flat plate.

treated as an inviscid compressible medium,

viscous inco!_.pressib!e fluid initially at rest.

The gas is

with the liquid as a

Using a linearized

compressible flow theory, the subsonic and supersonic cases,

together with inviscid and viscid limits, are e×arnined. This

analysis leads to quantitative criteria governing the stability of

their assumed configurations. The results appear valid for all

cases considered, but application to the ablation problem may be

limited to the nose region of very blunt bodies where the tangential

component of the body force may be neglected.

A similar analysis to the previous one was performed by

Plesset and Hsieh [10] in which compressibility is accounted for

in both fluids with, however, both viscosity and surface tension

neglected. The results obtained are valid generalizations of

known Kelvin-Helmholtz results accounting for the compressibility

effects. Again, only a body force normal to the interface was

assumed.

Another series of papers, although not directly applic-

able to the ablation problem, is of interest as regards the problem

of viscous superposed flows. This is the work of Benjamin [20] ,

Yih [21] , and Kao [13] . They have examined the stability of
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viscous flows down inclined planes, assuming the flow is always

parallel to the incline. In the respect that such a flow would

involve body force components both parallel and perpendicular to

the flow direction, it is not unlike the stability problem for a

molten ablation layer away from the stagnation region (see

Figure 1). An important difference is that in the first case the

one body force component is parallel to the flow serving as its

driving mechanism, whereas in the ablation problem it is anti-

parallel to the flow and hence a retarding mechanism. In this

latter case, the pressure gradient must drive the flow in a

direction opposite to that of the body force component tangent to

the surface of the body.

Kao [13] took Yihts work, which applied to a single

fluid only, and extended it by allowing another fluid to be super-

posed on the first, with a free surface bounding this upper fluid

from above. This configuration is closer to the two-fluid

stability problem of interest herein, except that in the ablation

situation there is no free surface bounding the two flows. Kao

analyzed his results only for the limiting cases of small and large

wave numbers. Among other results he found, assuming a fully-

developed parabolic velocity distribution in each fluid, that even
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for the case in which the upper fluid density is greater than that

of the lower fluid, there stillexists a minimum critical Reynolds

number below which all disturbances are damped. This result

demonstrates a stabilizing influence of viscosity which can be

enough to stabilize a configuration which is subject to the

destabilizing effect of the Rayleigh-Taylor mechanism. As

mentioned earlier, however, in the usual Rayleigh-Taylor

problem, viscosity cannot serve to stabilize the flow completely,

but only to lower the amplification rates. Thus Kao's results add

a significant feature which may be applicable to the stability

problem associated withthe ablation process. This same feature

has been also demonstrated by Cheng [2] . From the earlier

discussion, recall that such a stabilizing influence of viscosity

will be absent in the Kelvin-Helmholtz model.

B. Objectives of the Present Work

The above survey of relevant analyses now provides a

basis for the present study of the effect of a body force component

opposed to the flow direction on the Kelvin-Helmholtz instability.

This will be done with a somewhat simplified model from that

which physically exists in the ablation problem.

I
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The analysis will be kept two-dimensional, noting that

it has been shown generally that for the Kelvin-Helrnholtz flows

the most destabilizing disturbances are those in the flow

direction [Z2 ] Hence, neglect of fully three-dimensional dis-

turbances will yield pessimistic results from the analysis.

Further, viscosity will be neglected throughout. This

assumption, as has been discussed, is the most serious limitation

of the theory to be presented. In light of the previous mention of

Miles' conclusion [16 ] regarding the effect of viscosity on short

waves, and Kaots result [13] on the stabilizing influence of

viscosity, the assumption of inviscid flows may also lead to some-

what pessimistic results.

Curvature effects of the body will be neglected by

assuming the bounding wall for the liquid is a flat plate of infinite

extent. (See Figure 2_

of the basic flow (i.e.,

Physically, such a simplification is especially justified in the

liquid layer since it is so thin that gradients normal to the wall

would be expected to dominate those parallel to the wall.

In this way all gradients in the direction

parallel to the wall) may be taken to zero.

Thus the configuration to be studied is a generalization
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of the Kelvin-Helmholtz model. The main feature of the general-

ization is the introduction of the tangential body force component

opposed to the motion of the fluid. The stability analysis will be

done using the linearized normal mode approach. This will yield

from the linearized disturbance equations two second-order homo-

geneous ordinary differential equations subject to homogeneous

boundary conditions and to an interface condition. The resulting

characteristic equation relates the complex phase velocity (or the

complex angular frequency) to the wave number of the same. The

various physical mechanisms are represented by dimensionless

parameters which first appear through the governing equations

and boundary conditions. Such a characteristic equation is

generally called the dispersion relation, and, from it, will be

derived the stability features of the assumed configuration.

Namely, certain criteria for stability may be found as a function

of the dimensionless parameters of the problem, thereby indicat-

ing the relative stabilizing and destabilizing influences.
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CHAPTER II

TIlE BASIC FLOW

A. Introduction and Assumptions

The basic flow pattern whose stability is now to be

studied is the steady incompressible two-dimensional parallel

flow of two superposed inviscid fluids over an infinite flat plate,

subject to a gravitational field with force components parallel and

perpendicular to the flow direction. See Figures 1 and 2.

Again, the main goal of the present study is to find

the influence on the interracial stability of the body force compo-

nent gx parallel to the gas-liquid interface. In formulating a

generalized model to study this effect, several assumptions have

already been discussed (e. g., two-dimensionality, neglect of

viscosity and body curvature). These and the remaining assump-

tions are examined in the following, with proper justification

offered for each. Then, the conclusions to be drawn will be shown

to demonstrate some of the salient features of this stability

problem.

For completeness, all of the basic assumptions to be

made in accordance with Figure 2 are now listed, with the

-18-
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important aspects discussed in the following:

1. Both flows are assumed initially steady and

parallel to a plane wall at Y = - h.

2. Each fluid is inviscid.

3. The density of the upper fluid is assumed

constant. The lower fluid is a stratified medium

such that constant density surfaces are parallel

to the boundary wall. It will also be considered

"incompressible" in the sense that the density of

any given fluid particle remains constant as its

motion is followed. Thus

DP°- U 0p° + V OA : O,
Dt OX 8Y

thereby coupling the velocity components to the

density variation.

4. The two-fluid configuration is statically unstable

in the Rayleigh-Taylor sense. Explicitly, Pu < PL

at the interface Y = 0, with the body force normal

to the interface directed away from the denser fluid.

I
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5. The direction of the tangential body force

component is opposed to the direction of flow.

With reference to the ablation problem such

orientation usually corresponds to flow away

fro____ the stagnation point (for discussion of this

point, see Ostrach, Goldstein, and Harp_man [I]).

6. Surface tension is included at the interface.

7. The gas-liquid density ratio (gu/PL) and the

velocity ratio (UL/Uu) are much smaller than unity.

From ablation data[l] , pu/PL = 0(10 -5) and

ULIUu = 0(I0-3)"

The first assumption is made for convenience of the

analysis. Since the present work is a generalization of the Kelvin-

Helmholtz problem, the assumption of a steady basic flow here is

consistent with this original model.

Although, as seen from Figure 1, the body force

components vary from point to point on the body surface as a

function of the angle O, the assumption that the surface is a plane

wall is equivalent to saying that only a small segment of the body
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surface is to be considered. Thus the problem is one for which a

locally parallel flow may be assumed, as indicated by Figure 2.

The assumption that both fluids are inviscid is, perhaps,

the most serious limitation of the ensuing analysis, but again is

consistent with the Kelvin-Helmholtz interracial model. With

regard to the upper fluid, this assumption is quite reasonable,

since it is expected that at the interface the pressure and inertia

forces would greatly dominate frictional effects due to a viscous

shear layer. This is in agreement with Chang and Russell in

reference [9 ] . The neglect of viscosity in the liquid layer is,

however, not justified so easily in light of evidence of the actual

"slow viscous flow" behavior of ablating materials (e. g., see

Ostrach, Goldstein, Hamman [1 ] , [18] ). Here the results will

be considered in the light of justification of the inviscid Kelvin-

Helmholtz model, as discussed in Chapter I.

Although the assumption of inviscid flows will yield

some proper aspects of the interracial instability, the stabilizing

influence of viscosity as found, for example, by Cheng [2.] should

be kept in mind. Generally, it might be noted that even though

viscosity may not completely stabilize an interfacial instability as

in Cheng's case, it generally will at least lower the amplification
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rate of the disturbances (as for the Rayleigh-Taylor problem).

It is these above-named stabilizing influences of viscosity on the

interfacial instability of the present problem that will be lacking

in the final results. For a complete understanding of the effect

of viscosity on the melting ab!ation prob!em_ a more complete

analysis than that presented here is needed. Perhaps then one

could ascertain, as discussed in the Introduction, the complete

roles of both the Helmholtz instability of the interface and the

Tollmien-Schlichting instability within the fluid layers.

The assumption 3) is made to allow the main effect of

the upper fluid to be one of an inertial nature only. The effect of

compressibility in the upper fluid is discussed by Chang and

Russell [9] . In allowing for stratification of the lower fluid, the

liquid density variation that would result in the ablation problem

from aerodynamic heating is being taken into account. (It will

be seen later that this assumption is also necessary for the

inclusion of the body force component parallel to the flow direction.)

In making assumptions 4) and 5), it is noted again that

a "static" instability mechanism of the Rayleigh-Taylor type adds

to a "dynamic" instability of the Kelvin-Helmholtz type. Such

"static" influence is indeed the case in the ablation problem of
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interest, where the body force components are oriented in the

manner indicated in assumptions 4) and 5).

The inclusion of surface tension according to assumption

6) is in accord with the physics of a problem of interfacial sta-

bility. It would be anticipated that surface tension plays a

stabilizing role, and this will be shown to be the fact in the present

case.

B. The Governing Equations

With these assumptions now delineated, the equations

governing the basic flow may be written. The geometry indicated

in Figure Z is used, denoting the lower fluid by the subscript L and

the upper fluid with the subscript u, and setting our coordinate

system so that Y = 0 corresponds to the undisturbed interface

and Y = - d corresponds to a fixed rigid wall. Since from

assumption i) the flow is unbounded in the X-direction, the line

X = 0 is not unique, that is, its choice is arbitrary. Because of

this fact one would expect the velocity to be fully-developed, that

is, independent of X. The pertinent continuity and momentum

equations for each fluid then read
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o = a__v (z-la)
_Y

aP o (z-lb)
0 = - 8-'X - p gx

___P o (Z-lc)0 = _ + p g_
@Y

In (2-1b) and (Z-lc), the consequence of equation (2-1a)

has been applied, namely, V -- 0 in each region. As a result of

equations (2-1), the velocity distribution, in each fluid, is given

by

U = arbitrary function Y ; V _-mO. (z-z)

Note U is an arbitrary function of Y because in an inviscid fluid

the X-component of velocity is not required to satisfy any boundary

conditions in Y (namely at the wall, for Y infinite, and at the

two-fluid interface).

From (2-1b) and (2-1c),

differentiation

0ap_e_ ap°
gx 8Y = - gY 8X

eliminating P by cross-
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which implies that

0 0

p = fcn (-Y gy + X gx), or p = constant. (2-3)

Similarly,

P = fcn (-y gy + x gx ). (z-4)

Thus, from (Z-3) or (Z-4), constant density (pressure)

planes are defined by the lines

-Y gy + X gx = constant - -K

or

gx
Y : K + (----) X (2-5)

_y

This is the family of straight lines normal to the result-

ant body force whose slope is given by (gy/gx); schematically,

.... YI

Family of lines

defined by (Z-5).

Resultant body force.

I
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Thus it is found that the flow is stratified along lines

defined by equation (Z-5), and not along constant Y-lines according

to assumption 3). (An exception is the case

O

hence P = constant - p (-Y gy +X gx).

O

p = constant,

Here again the

pressure is constant only along the lines defined by equation (Z-5),

although the density is everywhere constant.)

Physically, the consequence of fluid stratification along

lines defined by equation (2-5) is that the interface must also be

defined by a member of that family. This is seen easily since in

the inviscid case the pressure must be continuous across the

interface. Thus, according to the governing equations (Z-l) the

interface also must be described by a member of the family of

straight lines (2-5).

Thus, there is an apparent contradiction. Namely,

that the flow cannot be parallel to the wall at Y = -d, but only

parallel to the family of lines defined by equation (2-5). This

latter statement implies a non-zero Y-component of the velocity,

contrary to the result (2-2). In other words, according to the

assumptions, the basic flow is always parallel to the bounding

wall, whereas the governing equations (Z-l) imply that the flow is

always parallel to the direction defined by (2-5).
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In order to avoid this discrepancy, it is now further

assumed that within the flow regions of interest the pressure

gradient in the x-direction can be neglected. This assumption

will then limit the analysis to regions wherein such a limitation

is v&!id !oca!!y. Also it x:d!! be seen that this assumption will

restrict the allowable class of disturbances that may be con-

sidered within the stability analysis.

Analytically, the previous statements imply that the

governing equations (Z-l) yield (together with (Z-Z))

U = U(Y). V = 0.

aP

ax- 0. (z-6)

dP o

dY - p (Y) gY"

This set now defines the basic flow whose stability will

be studied in the following chapters.
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CHAPTER III

FORMULATION OF THE STABIUTY PROBLEM

A. The Disturbance Equations

The method of stability analysis to be applied is that

usually termed the normal mode approach. This is a linear

theory arrived at by linearizing the complete equations for

infinitesimal disturbances about the basic flow. Thus the

solution sought is the behavior of the system relative to infini-

tesimal disturbances of a particular nature to be assumed.

In mathematical language, a time-independent basic

flow is known in terms of U(Y), 9 .0 (Y), and P(Y). The stability

problem is then an initial value problem whose dependent

variables are slightly (infinitesimally) different from the time-

independent solution. As time increases without bound, if the

solution approaches the basic flow solution,

said to be stable; otherwise, it is unstable.

the initial flow is

Actually, also

acceptable is a sinusoidal motion (non-increasing or non-decreasing

•with time) superposed over the basic motion as a (marginally)

stable motion.

that is s ought,

and unstable motions.

In many stability analyses it is this marginal state

since it is considered the boundary between stable

Instability here does not imply turbulent

-Z8-
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motion ensuing, but rather some immediate departure from that

which has been termed the basic flow.

The full equations pertinent to the flow situation are

(valid in each fluid):

OU av
Continuity: a--X + a--Y = 0 (3-1)

"Inc ompr e ssibility ":

o _o __Zap + u + v = 0 (3-z)
aT aX 8Y

Momentum:

o aU + pO U aU+ pO V aU aP o
P a-'T a_ a--Y = - O--X- p gx

{3-3)

o O___V+ P + _ --- +P gYo U OV OV OP o
P aT _ P°V OY OY

For convenience in later determining the important

physical parameters of the problem, it is now practical to put the

equations above in non-dimensional form. The following reference

quantities are thus defined:

I
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U R = U L I - UOL
y=O

0

P R = PL I - P OL
y=O

L R = d (3-4)

PR = POL UOL z

T R = d/UOL

Note the reference quantities for the density and velocity are taken

with respect to the liquid layer since it will be for this fluid that

the main characteristics of the stability problem will be seen.

In dimensionless form, using (3-4), the equations

(3-I, Z, 3) become

8u 8v

a) ax + ay 0

b) _ + ua-P-+ v a-P-= 0
at ax ay

(3-s)

I
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au + au au a_2 o__&_
c) o[ o--T u_ + ,,-f-_y] =-ax-

x

a_Zv + av av ap + O
d) o[ st u_ + v_y ] = - ay

Y

(3-5)

In (3-5c) and (3-5d) F and i_ are the Froude numbers defined
x y

corresponding to gx and gy, respectively; thus,

Z Z

UOL UOL
F = F - (3-6)

x gx h ' y gyh

These parameters represent the ratio of inertia to body force

effects.

With primes denoting the (infinitessimal) disturbance

quantities, and Uiy ) being the basic velocity distribution, the

velocities, density, and pressure applicable to equations (3-5) are

u = Uiy ) + u' (x,y,t)

v = v' (x,y,t)

o = o°iy) + o' (x,y, t)

P = pO(y) + p, ix ' Y, t)

(3-7)
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Inserting (3-7) into (3-5) and linearizing,

from (3-5)the disturbance equations

there results

0u' av I
a) -- + - 0

ax 0y

b) _'+ U_'+v 'din-°-0
at ax dy

a--Ku'+ u OU'+ v' dU Op_' p___[_'
c) °°[ at ax _ ]= -ax -

x

(3-8)

av' 0v' _p, o'
+ u + -_-d) O° [ at _x ] = - ax F

Y

In arriving at (3-8), equations (2,1) have also been used, in

dimensionless form according to the reference quantities (3-4).

Now applying the normal mode approach one may note

that since the coefficients in equations (3-8) are independent of x

and t these equations admit disturbances of the form

q(y) ei(kx + cot)

or

q(y) eik(x + ct) c = co/k,
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where q(y) is a complex disturbance amplitude, k the (real) wave

number (2_ divided by the wavelength of the disturbance), and ¢0

is a complex frequency (¢o _ o_ + i_o ). Thus also c =co/k=r i

c + i c. is the complex phase velocity of the disturbance. It also
r 1

follows that ¢0. is the amplification rate of the disturbance; with
l

disturbances growing, neutral, or decaying, according to whether

co. is negative, zero, or positive, respectively. Disturbances of
1

this form may be considered Fourier components of a more

general disturbance.

Thus, with the definitions

i k(x + ct)
u' = f(y) e

i k(x + ct)
v' = h(y) e

i k(x + ct)
p' = r(y) e

i k(x + ct)
p' = _r (y) e

(3-9)

d

the equations (3-8) become, in order, (with D _- dy

a) ikf + Dh= 0

b) ik (U + c) r = - (Dp °) h

r

c) ip°k (U + c)f + pO (DU)h = - ik_r - 7-
x

r._K_
d) ip°k (U + c)h = - Dw + F

Y

(3-10)
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Equations (3-10) form a system of four ordinary differential

equations for the unknown amplitude functions f(y), h(y), r(y), and

s (y}. Since the interest of the analysis is in the behavior of

co (or c) with k and not in the functions themselves, (3-10) is best

treated by writing just one differential equation. Since, as will be

shown, boundary conditions are described most easily in terms of

v', hence h(y), from (3-10) it is found that h(y) satisfies

D {p°(U + c)Dh - p°(DU)h - i (D9°) h } - p°kZ(U + c) h
kF U+c

x

= _ D__p° h
s u+c (3-II)

Y

This is the disturbance differential equation for the amplitude

function of the y-component of the disturbance velocity. The

solution of this equation subject to the boundary conditions,

discussed below, will determine a dispersion relation between c

and k. For F = 0o, the results will reduce to those of the usual
x

Kelvin-Helrnholtz problem, as will be seen in Chapter IV.

B. Boundary Conditions

The disturbance velocity v', or h(y), has been chosen

as the dependent variable, hence, the differential equation (3-11).
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This has been done because physically one is most easily able to

interpret the boundary conditions in terms of v t (x, y, t).

Explicitly,

y = _ (x, t) (3-1Z)

describes the equation of the infinitessimally disturbed interface

due to the introduction of perturbations of the basic flow. Since

the surface described by equation (3-12) is a material surface,

i.e., a surface which for all time consists of the same fluid

particles, one may write

or

D

D-7(_-y) --0 at y =

_--_ + U a--_ = ay at y - _
_t ax _t

(3-13)

Since only initially infinitessimal disturbances are considered,

this relation may be evaluated approximately at y = O. Such an

approximation is consistent with the previous linearizations of

the governing equations since any small quantity may be expanded

about y = O, and then linearized. Thus, for example,
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Ot Ot Oy Ot ....
y=_ y=O y=O

Hence,

011 I _ a-_--rl[ after linearization.
Ot Ot '

y=_ y=0

Noting then that

Oy J _ OY I : v'(x, 0, t)
Ot 0t '

y=:q y=O

equation (3-13) is written

011 ÷ U _ = v'(x, 0, t) at y = 0.
Ot 0x

As with the other disturbance quantities given in

equations (3-9), the interface may be described by

= s(y) e i k(x + ct)

Combining (3-15) with (3-16) yields

i k(U + c) s(0) = h(0).

or

(3-16)

(3-17a)
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i h

s(0) = - k ( U+c )y=0 (3-17b)

Since this last equation has been derived without desig-

nating the fluid of interest, it obviously is valid for each region

of flow. Thus, in order for the displacement of the interface to

be uniquely determined, it is required from (3-17b) that

h hLU

Uu +c UL+C
at y = 0 (3-18)

This result is a consequence of the assumption of inviscid fluids.

If viscosity were present, it wouldbe required that %(0)= UL(O),

and, hence, also Vu(O ) = v L'(01 as might have been expected.

Equation (3-18) is the first of the required boundary

(interface) conditions on v' (or h(y) ). Others are given by noting

that the disturbance must vanish at the wall and as y -P 00, thus

a) h(-d) = 0

b) lim h (y)

y_ o0

= 0o
(3-19)

In addition, a normal stress condition must be satisfied

at the disturbed interface. (There is no tangential stress

I
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condition again because of the absence of viscosity.) This normal

stress relation is an expression of the force balance between

pressure and surface t_nsion forces. In dimensionless form, the

condition reads (see [Z3] )

- = -PL at y=_
Pu + _/ Ox z

(3-z0)

where W is the Weber number defined by

Z d
P 0L U0L

W = , (3-Z1)
T

representing the ratio of inertia to surface tension forces.

In equation (3-20) the pressures given are the total

pressures due to the basic flow plus the disturbance flow. Using

the superscript (o) to designate basic flow quantities, (3-20) is

written

' 1 az

-(P: + Pu ) + W _x-_ = -(PL+PL)at Y= Ti-

As in the derivation of (3-14),

I
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I !

Pu(_) _ Pu (0)

so the above is written

o ' 1 8Z_ o '
u. -- _ = - PI., (v]) - PL(O).- P-- (_]) - Pu (0) + W ax-

Using equation (3'15) for T],

k z0 i 0 t

- Pu (_) - Pu(0) - -_ = - PL (_]) - PL (0)" (3-Zla)

O

From equation (Z-7i the basic pressure p in each fluid

is now determined. In the upper fluid, since the density is a

constant

o _3_
pu°(_]) = const. + Pu F

Y

Assuming an exponential density variation for y <

o - _y
PL = e ,

0, i.e.,

1

pL ° (11) = const. -

O

PL (_)

F
Y

I
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However,
O

o o __SPL I _ = 1-_, after
PL (N) = OL(0) + 8y

y=O linearization.

Hence,

0 ,

pL[_). = const. + _F
Y

O O

Using these results for pL(_ ) and pu(T]), equation (3-Zla) reads

O

kA
Pu , rl _ p 'L(O)" (3-Zlb)-f-- ,1 - l:,u(O) - w ,1 = - F

Y Y

In addition, from (3-10c),

t 0 ' i 0 t

-p = p (U + c) u - _ p (DU) v ,

and from (3-10a),

' i '
u - Dv .

k

Thus,

' i
P

P = -- in
k L r--

I o I
o (U+ c) Dv - p (DU)v ] .

I
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Applying this to equation (3-21b) yields

!

4[ o (u+c) m o , _ kz
k - p (DU) v ] = + F I]+ _T]

Y
(3-Zlc)

where the following shorthand notation has been used

a[ ] _ [ Jr:0+- [ ]y=o- (3-22)

Noting from (3.15) and (3-16) that

n

!

i v

k U+c

equation (3-Zlc) may be written finally as

A[ pO (U+c)Dv' o '- p (DU) v ] = - (A_P]
F
Y

k z
+ __ v -Z3)w )(-fg-_j)y:_3

ik(x+ct)
The exponential factor, e , may now be cancelled

in the above, giving the final result

0
A[p°(U + c) Dh - p (DU) hi - (A[p°]

F
Y

kz h )(3-Z3a)
+-W-)(D-_y=O

Thus conditions (3-18), (3-19), and (3-23a) are the

required boundary conditions for the solution of the differential
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equation (3-11) in each of the two regions of interest. These will

be sufficient to determine the dispersion relation, as shown below.

C. The Dispersion Relation

Ln the discussion of the basic flow, it has been shown

that the x-component of velocity may be taken to be an arbitrary

function of y. Thus as a first attempt at the solution of (3-11), it

is further assumed that the basic velocity profile is uniform in

each flow region, but Uu _ U L (see Figure Z). This assumption,

together with the earlier assumptions discussed in Chapter II,

yields from equation (3-II):

(Note: Henceforth the superscript (o) is dropped from the notation.

All densities which appear refer to the undisturbed flow

field. )

(a)_u(Uu+ c)[DZhu-kZhu] = 0 fory > 0.

ihL DZPL 1 (3-24)
- )_-(b)(l+c)(D2hL-kZhL) k(l+c)( pL x

DO L iDhL 1 hL

+-- [ (l+c) Dh L - + ] = 0
PL k(l+c) F (I+c)F '

x y

fory< 0.

I
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Again, as in the derivation of (3-Zlb),

-_y DP L

PL = e , or = - _.
PL

(3-25)

Equation (3-24b) may then be written, after some expansion

(assuming c _ 1, since c is generally a complex number),

DZhL + _ ( i - 1 ) Dh L

kFx(1 + c) 2

_ (k 2 + i@z
+ _ )h L = 0

kFx( 1 + c)z Fy(l + c)z

!

(3-Z4b)

Thus the two differential equations to be solved, viz., (3-24a) and

I

(3-24b), are ordinary homogeneous second-order constant

coefficient equations, yielding the general solutions

h
-ky ky

u = c I e + cZ ea) U +c
U

hL P 1y P2 y

b) 1 + c - c 3 e + c4 e

where Pl and Pz are the roots of the quadratic equation

I
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I

I
z i kz i_2p +_( l)p-( + + ) = 0

_x(l+c)z _ (l+c) 2 r .(l+c) 2 "
3J

I
I Hence,

I P--(1- i )+1 i
Pl, z = z _ (1+c)2 _ _ [Oz (1 + _ (1+c)2

I
I

l/Z

+ 4 ( k2 + _ ) ] (3-z7a)

Fy(l+c) 2

I
Inserting the solutions (3-26) into the interface condition (3-23a),

I and using (3.19a, b) and (3-18), there results

(UL+C)2
I PU (Uu+c)Z ÷ k [

I (1 -pU )

Pz Pl

pz e - pie

P2 P 1
- e

] +i ----p---
kZF

x

k
+ T_r (3-2-8)

I Using (3-2-7a), equation (3-2-8) may be written finally in

the form
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p (Uu+c)Z÷ _ ( _(1 - i )+ 1
u k _x(l+c)Z _ [_z(l+

2
i

_x(l+c)Z)

llZ
+ 4 (k 2 + _ ) ] coth 1 i )Z

r (l+c)z z [_z(l+ -
y. kFx(l+c)2

1/2 (1 - 9u ) k
+ 4 (kZ + _ )] } + _ _ _ + --

F ,(l+c) z k z F kF W
y x Y

(3-z9)

This is the final dispersion relation between the complex

phase velocity c and the wave number k. Because of its transcen-

dental nature no general solution can be easily obtained, but

limiting cases may be discussed. This is done in the following,

together with discussion of the reduction of this equation to the

usual Kelvin-Helmholtz results, i.e., those for which the tangential

body force is zero (F = o0).
x

In solving equation (3-29) it is noted that for the

disturbances of the assumed form, any c with a negative real

part implies an unstable motion. That is, if one mode of

instability is found, the motion is said to be unstable, regardless

of any other modes of the disturbance flow. It is the nature of
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these unstable modes and their associated amplification rates

(i.e., I coil )_ that is sought in the following.
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CHAPTER IV

KELVIN-HELMHOLTZ RESULTS FOR INFINITE F x

Before proceeding with the new results accounting for

the tangential component of the body force, the stability results

corresponding to the case in which this component is excluded

(F X = 00) will be discussed. The configuration then will be that

relevant to the usual Kelvin-Helmholtz flows, that is, two super-

posed parallel inviscid streams subject to a body force perpen-

dicular to the interface. The motivation for the discussion of this

particular situation is two-fold. First, the effect of a lower

bounding wall and density stratification of the fluid will be

examined. These are two effects which have not been emphasized

in the literature relevant to this configuration. (Again, note that

the body force component is assumed to be directed from the

heavier to the lighter fluid, except where specifically mentioned

otherwise.) Secondly, the complete understanding of the stability

analysis pertaining to this problem will aid in the interpretation of

the results for the complete problem accounting for both body

force components. The results for the complete problem, as will

be seen, are dependent upon the behavior expected for the reduced

(F X = 00) problem, which is examined in the following.

-47 -
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Thus, with the tangential component of the body force

excluded, the characteristic equation (3-29) yields

pu(U u + c)z + (l+_t_2 (})z kzk {}+[ +( +
112

P )]
F .(I + c)z

Y

coth[( 2_ )2 + (k Z

1/2 1 - p
+ p, )] } = k _ u (4-I)

Fy(l+c)Z W kFy

Note that it is assumed throughout that the density of the upper

fluid is less than that of the lower, i.e., (1 - pu ) > 0.

Usually, however, both fluids are considered to be

incompressible and unstratified. In that case _ = 0, and (4-1)

yields

Pu (Uu + c)2 + (1 +c) Z cothk - k _ _ (4-2)W F
Y

This is the proper result for the usual Kelvin-Helmholtz problem,

with the addition of a bounding wall at y = -1. The effect of this

wall is seen in the occurrence of the factor (coth k) in the above

expre s sion.

I
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Equation (4-2) may be expressed more conveniently as

(Pu + coth k) c 2 + Z(PuUu + coth k) c

1 - Pu k 1 0 (4-Za)4- [ n TT _- 4-C_*h lr 4- _--
"u _u ....... F W "

Y

From equation (4-2a) the results regarding the stability

of that configuration are easily determined since now the transcen-

dental nature of equation (4-1) has been eliminated. Since the

coefficients of c in (4-Za) are real, if the roots are complex, they

will appear as a complex conjugate pair. The root for which

c. > 0 corresponds to damped disturbances, whereas c. < 0
1 1

corresponds to amplified disturbances. Because the total behavior

is a superposition of both solutions, the net effect will be amplifi-

cation unless c. = 0. Thus the discriminant of (4-2) must be non-
1

negative for c real, yielding the result

k 1 - pu Pu (Uu - 1)2
-- - > 0. (4-3)
W kF Pu + coth k =

Y

This is the necessary and sufficient condition for stability of the

configuration applicable to equation (4-2).
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Several interesting conclusions may be drawn from this

inequality. First of all, if there were initially no flows involved,

the configuration would correspond to the "inviscid Rayleigh-Taylor

problem" for both fluids unbounded in their extent. Analytically,

! this corresponds to the result (4-3) less the term

! o
p (u

u u
_ i)z

I + coth k
Pu

!

!

The criterion for stability then reads (in dimensional form,

now U R is undefined)

since

I k > k cutoff ' (4-4)

I whe re

, .. guy

I k cutoff -= (PL - p" ) ,

!

l

This is the result quoted in the Introduction, showing explicitly the

existence of a cutoff wave number due to the stabilizing mechanism

of surface tension. Without this effect, W = 00 ( v = 0), and the

! situation is unstable for all wave numbers.

I
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The same destabilizing behavior of the body force

demonstrated by (4-4) for the Rayleigh-Taylor situation also

appears for the Ke!vin-He!mho!tz flow. This behavior is seen

explicitly by the term (1 - pu)/F in (4-3). This term appearsY

solely as a result of the assumed density discontinuity at the

interface. If the direction of the body force were reversed so that

the force was oriented toward the heavier fluid, then obviously

the Rayleigh-Taylor configuration would always be stable, and the

Kelvin-Helmholtz flow would be further (though not completely)

stabilized. The effect of inertia, through the term

(u -1) z
u u

9 + cothk
u

represents the classical Kelvin-Helrnholtz instability. The

appearance of this term may be explained by the fact that there is

an assumed jump discontinuity in the velocity at the interface. Its

physical significance is best interpreted as a limiting form of the

Helmholtz instability, as discussed in Chapter I. It can be seen

that the (non-dimensional) velocity difference (U u - 1) character-

izes the strength of vortex sheet which represents the interface,

and hence characterizes the Kelvin-Helmholtz instability,

I



I

i

i

I

I

I
i
i

I
i
I
i
i
i
i

I

-52-

The above conclusions have been emphasized to clarify

what it meant when it is said that the flow relevant to the ablation

problem is unstable in the Rayleigh-Taylor sense. That is, the

orientation of the normal body force is destabilizing in the sense

described abovc for both the Ray!eigh-Tay!or and the Kelvin-

Helmholtz cases. This destabilizing effect is expressed by the

term (1 - Ou)/kF in equation (4-3).Y

As further illustration, the inequality (4-3) may be

written, for the case when the body force is directed toward the

denser medium (the liquid), as

k 1 -Ou O u(U u- 1)z"
- + > (4-_)W kF =

y p + coth k
U

The left-hand side of this expression is a minimum for (4-5a)

J !

(1 - 0u) w
k = k = F ' (4-5a)

Y

so that from (4-5), surface tension will stabilize this Kelvin-

Helm_holtz flow if

J l

1 - 0u 0u (Uu - 1)z
WF >

y = 2(pu + coth k)

(4-6)
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This result is due to Kelvin [25 ] in his study to deter-

mine if such a mechanism is the proper one in describing the

generation of ocean waves by wind. He concluded that for certain

conditions this is indeed a meaningful model. In Kelvin's result,

I

I

the factor coth k is replaced by -_nity because he considered the

case for which the lower fluid is unbounded in y, i.e., d = 00

Since coth k >__1, from either result (4-3) or (4-6), it can be seen

I

I

I

that the presence of the lower wall has a stabilizing effect in

comparison with the case without it.

An analogous result to (4-6) cannot be written for the

case of interest in the ablation problem in which the body force is

directed from the liquid to the gas. This is due to the fact that

I k I -Pu

- f ]

I
I

I
I

Y

has no relative minimum, and hence no value k exists.

In conclusion of the case in which the liquid is

unstratified (_ = 0), when the inequality (4-3) is violated, the

amplification rate (¢0. = c.k) of the disturbances, as found from
1 1

(4-Z), is given by



I
I
I
I

I
I

I
I

I
I
I

I
I

I
I

I
I

I

-54-

J I

= c.k = k 1-Pu
i 1 Pu + coth k Pu(Uu - 1)z+ (Pu + coth k I k--_ - _V]k

Y

(4-7)

Here again the relative stabilizing and destabilizing factors, as

discussed, may be ascertained.

Attention may now be turned to the more general result

for the stratified medium, _ _ 0. This result as shown is

essentially that found by Alterman [Z4] under the same conditions

as used in deriving (4-1), except that he assumed the upper fluid

was also exponentially stratified and that the lower fluid was

unbounded vertically. In the present notation, Alterman's result

reads

1/z
1 13ZPu(Uu+C) 2 { - 2_+_ [ + 4(k 2 -

Fy(Uu+C)Z)] }

i/z

+ (i+ c)z { z_ + _ [ +4(kz - P )] }
F (1 + c)z

Y

1 -p u k
+ -- (4-8)

kF W
Y

Note too that he assumes the body force is oriented toward the

I
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heavier medium, that is, in the stabilizing direction. This is

seen if the above is compared directly with the present result

(4-1).

result,

except for the long wavelength case, k <<

a criterion on the velocity difference (U
u

shows that for k -_

is always stable.

Alterman, also due to the transcendental nature of his

does not find an analytical result governing the stability

_. Then he determines

- I)for stability, which

0 (infinite wavelength limit) the configuration

If the long wavelength limit k < < _ is applied in the

present case to equation (4-1), the criterion for stability becomes

(assuming further that the density ratio Pu is very much less than

unity)

For k<< _, (4-9)

k I - Pu Pu(Uu - 1)2 coth _/2
a)

- kF pu + cothk- kF
Y Y

> O,

or

Pu(Uu" l)Z k 1 - Pu

b) 0<
p + cothk < W

U

coth 13/2

kF kF
Y Y

Again the destabilizing effect of the body force gy

in the present case through the appearance of the terms

is seen

I
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1 -p
u coth _/Z

k F and

y k Fy

The form (4-9b) of the result is analogous to Alterman's in the

sense that it indicates the allowable relative velocities IU - 1 I
u

for a stable configuration. The effect of the terms involving F is
Y

to restrict this range of allowable relative velocities, thereby

implying a destabilizing influence of the body force gy. Further,

because of this destabilizing effect the result (4-9) indicates

complete instability in the long wavelength limit, k -_ 0. It is also

apparent from this latter result that stratification enhances the

coth _/2 which
instability through the inclusion of the term k F '

Y

serves as an additive effect to the usual Rayleigh-Taylor mechanism

expressed by the

1 - Pu

kF
Y

Therefore, density stratification acts to further enhance

the Rayleigh-Taylor destabilizing effect on the present Kelvin-

Helmholtz situation. Conversely, if the body force were directed

toward the heavier fluid, then both terms involving F would
Y

become stabilizing factors, and complete stability would result in

the limit k _ 0, as indicated by Alterman.
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In addition, it is noted that the other extreme limit for

short wavelengths (k >> _) reduces the general result (4-I) to the

criterion for stability given by

I-o p (U -I) 2

_k _ u _ u" u _ __K__ >
W k F p + coth k =

y u 2kZF
Y

P

Here, because of the limit taken,

0, fork>> _.

(4-io)

the additional term

may be considered negligible compared with the other
2k 2 F

Y

terms of the inequality. Its appearance in (4-10) does, however,

indicate a destabilizing influence of stratification, as in the pre-

vious limit, k << _. The result (4-10) may thus be considered

essentially the same as (4-3), derived for no density stratification

(_ = 0). Note that complete stability is predicted in the short

wavelength limit k -_ 0o

Therefore, it may be concluded from the comparisons

made of the criteria (4-9) and (4-10) that small wavelength dis-

turbances are more stable than those for large wavelengths. One

contributing factor to this result, not yet emphasized, is that for

the small wavelength case (k >> _) surface tension has a more

dominant role. This fact is seen explicitly in the term k/V¢
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appearing in both limiting results. Finally,

cation appears as a destabilizing mechanism in every case,

its effect most dominant in the long wavelength limit (k <

the density stratifi-

with

Again, this destabilization is due to the assumed orientation of the

body force gy (viz., toward the lighter medium), which causes the

stratified layer itself to be unstable.

In conclusion, note that in all of the results the Kelvin-

Helrnholtz destabilizing influence appears through the terms

involving the relative velocity (U - I). That this Kelvin-Helmholtz
u

mechanism appears independently of the Rayleigh-Taylor mechan-

ism is obvious from any of the results (4-3, 9, I0). It was this

fact that led to the statement in the Introduction that the effect of

the normal component of the body force (through the terms

involving Fy) should be considered as a superposition of the

Rayleigh-Taylor mechanism on the Kelvin-Helmholtz problem. In

the next chapter it will likewise be shown that the influence of the

tangential component of the body force also appears as a super-

position on the Kelvin-Helmholtz instability described in the present

chapter.



I
I
I

I
I

I
I

I
I
I
l

I

I
I
I

I

I
I

CHAPTER V

KELVIN-HELMHOLTZ RESULTS FOR FINITE F x

A. Introduction

In Chapter IV the pertinent stability results for the

case of zero tangential body force (Fx = 00) were discussed. It

was seen there how, under properly simplified circumstances, the

dispersion relation could be reduced to forms which yield general

stability criteria (e. g.,

(e.g., equation (4-7)).

(4-3)) and/or amplification rates

With attention now focused on the general

dispersion relation (3-29), it is easily seen that no such simple

results are obtained in general. The cause of this dilemma lies,

of course, in the transcendental nature of that equation. The fact

that the "characteristic" parameter c appears within transcen-

dental functions makes its determination in a closed analytical

form impossible. Moreover, any trends indicating the dependence

of c on the relevant parameters (e.g., F , F , and W) are
x y

equally difficult to obtain.

possible.

constant

and then,

In handling (3-29), however, two alternatives are

First, since this is an equation involving the complex

c = c + i c., one could separate it into two real equations;
r 1

by numerical means, calculate the amplification rates

-59-
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( c i k) corresponding to various sets of non-dimensional parameters.

In this way some idea of the behavior of the system can be ascer-

tained for at least some situations of interest. In the present case

the appearance of the hyperbolic cotangent makes such a procedure

quite laborious. The numerical work requires an iteration scheme

simultaneously on the two real equations, which both still contain

transcendental functions of c. and c The rather uncertain values
1 r"

that should be chosen for several of the parameters (especially U u

and W) make such numerical work of limited value.

The second alternative is to reduce (3-29), by proper

limiting arguments, to a form analogous to those obtained in

Chapter IV, but now including all pertinent factors. It will be

seen that such results represent the solutions indicated in Chapter

IV with additional terms for finite F included. This will be in the
x

same sense that (4-9) and (4-10) were generalizations of (4-3) for

4 0. The results to be obtained in the following appear valid

for the ablation problem taken in a proper limiting form.

B. Simplification of the General Result {3-29)

In order to reduce systematically the dispersion

relation (3-29) to a workable form relevant to the ablation problem,
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representative data must be introduced.

following (see ref. [Z] ),

These are given in the

Flight Mach number: 18

Altitude: 90, 000 feet

Sound speed: 987 feet/sec.

* -5
Gas density (Pu): 5.44 x 10 slugs/feet B

Deceleration force (g): 23 G's = 735 feet/sec.

Gas speed (Uu): 3, 000 feet/sec.

Liquid density (P0L): 4.07 slugs/feet 3

Liquid film speed (UL): Z. 0 feet/sec.

Liquid film thickness (d): 0.1 feet.

Surface tension coefficient (_r): 0.0Zl lb./feet
-T.

Exponential density factor ([3): 30/feet.

(5-1)

For these values the dimensionless parameters, as

defined earlier, become for an angle O = 35 ° on the body as in

Figure 1,

F = 0.067
x

F = 0.09Z
Y

W = 77.5

-5
p = 1.34x 10

U

U L = 1

U = 1500
u

(5-z)
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The values now given in (5-2) readily allow some

simplification of (3-29). First,

aomm_tes the phase velocity c,

may be written

the extremely large value of U
U

so that the first term of (3-29)

Pu (Uu + c)z ~= Ou Uu2 (5-3a)

The ensuing results will show that c is a quantity of unit order,

thereby further justifying this approximation. From the governing

disturbance differential equation (3-8d), applied to the gas stream,

the above approximation is equivalent to the statement

! !
Ov 8v

u u
<< U

8t u 8x
(5-3b)

namely, that the unsteady part of the inertia may be neglected

compared with the convective term dominated by the influence of

the large uniform gas velocity (ratio) U . This assumption appears
U

quite valid in the present context. Chang and Russell [7 ] also

claim its validity if Pu << 1, which is certainly the case here.

As a consequence of (5-3), the relation (3-29) may now

be written
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1 i )z(l÷c)Z{ _(1 - i ) z [_2 {1 +
kFx{l+c)2 + kFx(l+c)2

+4(kZ+ _ )]

Fy(i+c)Z

l/Z
coth ½ [132(1+ i )z

kFx(l+c)z

I/Z kz _ 1-p_ u Z
+ 4 (k z + _ )] } W -kF F kPu U

Fy(l+c)z x y u

(s-4)

This result is still not in an easily workable form for

analysis. For further simplification, use may be made of the

assumption (stated in Chapter II) which allowed the x-component

of the pressure gradient to be neglected in a local region of

interest. If this assumption is to be valid within the framework

of the stability analysis, the wavelengths of the allowed disturb-

ances must be "short enough" that they are unaffected by the

x-component of the pressure gradient. More precisely, the

length characteristic of a pressure change, given by

1 1

_. i_1_ -8x
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is assumed to be very large compared with a disturbance

wavelength k . Thus the criterion for validity of the above

assumption is that

x__i_i<< I.
p Bx

(5-5)

Therefore, one may infer that the stability analysis is best

considered in the small wavelength (large k) limit.

If (5-5) is now applied to the lower fluid, ]Dp/Dx I may

be replaced by PL/Fx and p by an "effective dynamic pressure 'l

PL [l+clZ" The inequality (5-5) may then be written

1 1+Lk__z k i1+cl2 2F << x -" z_ < k I_+_1 (s-s_)
x

Further explanation of this last inequality can be found

by examining the disturbance differential equation (3-24b) for the

liquid layer. One then sees that (5-5) implies the term

i _ Dh L

k Fx(l+c)Z

is neglected in comparison with _Dh L. Thus (5-5a) is tantamount
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to neglecting the effect of heterogeneity of the fluid on the body

force influence as compared with the inertial influence. If this

latter argument is also applied to the other body force component,

it may be further assumed that

<< k211+clz (5-6)
F
Y

Note, however, that even with the assumptions (5-5a)

and (5-6), the right-hand side of equation (5-4) contains both body

force components, where both these terms arise as a result of

the assumed density discontinuity at the interface. The

appearance of these terms is independent of the latter assumptions.

C. Results

With the assumptions (5-5) and (5-6) applied to the

dispersion relation (5-4) there results

1 kZ _ 1-Pu _ k p u z } (5-7)(l+c)Z- r(k,_) {_''_-_" u u
x y

where

F(k, D) j3 + [ k z __] 1/2 coth [ k 2 t32 ] 1/Z
= 2 + 4 +4
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The right-hand side of (5-7) is a complex quantity,

independent of the phase velocity c, so that setting c = c + i c.
r i

allows the separation of this equation into two real equations.

From these equations it is found directly that

Uu2 -_j (k2F)

Z k l-Pu 1-Pu k_+._.Z

%

(a) c. = [(puuZ+ k)+ Pu kF
I 2F(k, _) u kF +

Y Y x

(s-8)

(b) c = - 1 - 1
r F(k, _) c. ( 2kF )

1 x

P_

From this last result it may be noted that c = -l+0(I/k'_
r

or Cr =-U L, for large k (small wavelengths). From the assumed

form of the variation of the disturbance this result yields

-c.t

q(y)e ik_x+ct],' : q(y)e
I ik(x+Crt ) -c.ti ik(x-t)

e = q(y)e e

so that the disturbances may be considered waves of amplitude
-c.t

q(y)e 1 traveling in the positive x-direction with the velocity of

the liquid layer. Hence, relative to this layer, the disturbances

are essentially stationary. This result may serve as justification

for those analyses which treat the liquid as an initially stationary
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medium and study disturbances relative to it. The work of Chang

and Russell [9] is an example of such.

2
In order to interpret the result (5-9a) for c.

1
further,

it may be noted that the stability criterion (4-10), relevant to the

Kelvin-Helmholtz problem with zero tangential body force compo-

nent (F = ae), may be written for the present case (with U >> 1,
x U

Pu<< 1, and large k) as

1 -p
2 u k

Pu U + -- < O. (5-9a)u kF W =
Y

The above expression also appears as a factor in the expression

2
(5-8a)for c.

1
• From the numerical data (5-27 the above may be

written

10.9 k
30.2 + k - 77.5 <= 0. (5-9b)

From either of these forms a cutoff wave number,

analogous to that derived in Chapter IV, can be found. If this is

done, there results from (5-9a, b)

where

m

k > k for stability, (5-9c)

_ PuUu2W J p v Zw (_-pu)W"k- 2 + ( uu .)2+- 2 Fy
- 2340.
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For k < k, that is, the condition for unstable modes

2
in the F = co case, the first factor in c.

X 1
as given in (5-9a) is

positive thereby adding to instability of the complete configuration

m

(F < co). Thus, for k< k there is ' 'in/_er entan instability"X

which acts independently of the existence of the tangential body

force. This "inherent instability", as seen from (5-9) is due

primarily to the:large velocity discontinuity at the interface. Thu_

except for very small wavelengths (viz.,
m m

k < k = Z_/k), all

disturbances grow, regardless of the stabilizing influence of

surface tension. This latter mechanism, of course, does provide

a means of lowering the amplification rates, and most importantly,

admitting the cutoff wave number k.

In addition, (5-10) indicates that the tangential compo-

nent of the body force adds to the "inherent instability". This

destabilizing influence appears to be independent of the assumed

directional sense of this component.

- 131k2FU 2>> x'For k< k, since Pu u

may be further approximated by

equation (5-8a)

Z k 1 "Pu k (_IZk z F )2

c -, p)[(0uUZ+_ _ )+ x.i F(k, kF W 2 1-Pu k ] ' (5-1 0a)

Y Pu U + --_ --u kF W
y
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hence,

I co2 c 2k2 k PuU2u+ l-Pu ki : i : F_,_) [k2( _ _V} +

I "

m

Similarly, for k > k ,

(_1zk rx)Z

Z
PuUu

1-p
u+_

kF
Y

k

W

(5- 10b)

•

I
I

I

z 1 (#/z Fx)Z
co. -"

I kF(k,_) [ k z 1-pu ]
W - PuUu - kF

Y

(5-11)

so that the amplification rate in this case goes to zero as k-_ _.

(Note that as k _'o0, F(k, _) tends to k.) This is the expected

behavior, namely stability for the very short wavelength disturb-

ances due to surface tension effects.

Since the results of this analysis are generally valid

for the small wavelength limit (large k), the result (5-II) is a

proper one. Also, because of the rather large value indicated for

m

k, the result (5-10) will also remain valid over some wide range

of values for k, i.e., so long as the inequalities (5-5) are not

violate d.
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Also, from the definition of F(k, _) in (5-7a), the ratio

[k] F(k, _) ] appearing throughout the results is less than unity for

any finite wave number k. This serves to lower the amplification

rates, as seen in equations (5-10) and (5-11). This stabilizing

tendency is again primarily due to the finite thickness of the liquid

layer.

If the amplification rate given by (4-7) is reduced by the

present data, as in deriving (5-10), there results

2 2 2 1 -Pu k
C0. I += k(PuU ---- ),1 U kF W

F = 00 y
x

so that (5-10b) may be written

2 k ¢o2 (_] 2 Fx)Z
_ - [ I + z ] for k< [.

1 F(k,_) i F = oo _. [
x 1

F=m
x

(5-,z)

This result is, of course, valid only for long waves such that

k < k, i.e., waves long enough so that the "inherent instability"

indicates by (5-10) plays a role, but not so long that either of the

inequalities (5-5) or (5-6) are violated. For the shorter waves

(k >__k ), the amplification rate for the case of zero tangential body
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force (F = oo ) is zero, and the amplification rate for the com-
x

plete problem (F < 00) is given by (5-11).
x

D. Summary and Comparisons

In order to reduce the general dispersion relation (3-29)

to a workable form, two important assumptions were made.

First, the transient motion of the gas was neglected in comparison

with its inertial effect. Secondly, the inequalities (5-5 a, b) were

applied, having made use of the previous assumption that the

pressure gradient in this flow direction could be neglected locally.

Two results followed, depending on the satisfaction of

the inequality (5-9), which expresses the stability of the present

configuration with zero tangential body force (F = o0). For the
x

violation of this inequality (k< k), it was found that the situation

is "inherently unstable", i.e., unstable independently of the

tangential component of the body force. This component was then

found to be further destabilizing for the k < k case. For the

inequality (5-9) satisfied ( k > k) there is no "inherent instability",
m

but the tangential body force was found again to be destabilizing.

Even in this case, however, from (5-11), the relative influences

of the other parameters are seen. The destabilizing effect of the
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tangential body force component appeared to be more dominant

for the situation which is "inherently unstable". It should be

noted here that the effect of this "inherent instability" is not

unlike the superposition of the Rayleigh-Taylor mechanism on the

Kelvin-Helmholtz instability, as discussed previously. There-

fore, the "inherent instability" can be interpreted as just the effect

of the Kelvin-Helrnholtz instability discussed in Chapter IV super-

posed onto the more general case for a non-zero tangential body

force component.

The results presented herein are indicative of the

behavior expected for the configuration corresponding to the

ablation problem, i.e., subject to the representative data given

by (S-Z). The amplification rates as given by equations (5-I0)

and (5-11), for the conditions specified, indicate the behavior of

the growth of the disturbances as a function of the wave number.

These results also indicate the dependence of the growth rates

on the dimensionless parameters of importance, viz., F , F ,
x y

W, Pu' and U . The rates given by (5-10) and (5-11) areu

asymptotic (i. e., for the short wavelength limit) in nature, due

to the aforementioned assumptions and limiting cases. The

trends predicted appear valid when comparison is made with
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who accounted for the tangential component of the

with viscous effects included. This comparison can,

be made only for the short wavelength limit where,

the viscous effects neglected in the present analysis

serve as a stabilizing influence (cf. Miles [16 ] ).

Cheng [2 ] has found, using an approximate method of

analysis derived from consideration of the disturbance energy

transfer, that whether the tangential body force field is destabiliz-

ing or stabilizing depends only on whether the product

d 2 UO/dy 2

(_-x) ( d U o/dY ) Y =0+

is a positive or negative. (U0(Y) is the interfacial mass velocity,

which is continuous because the velocity across the viscous inter-

face will suffer no jump discontinuity.) In the present case, F
x

has been chosen as a positive quantity, and hence for stability it

is required that

d2Uo/dy 2

( d Uo/dY )Y = O+
> O.

Cheng, however, has found that this ratio is negative at the

stagnation point, and appears to decrease in the downstream
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so long as one stays in the subsonic nose region of a

see Fig. 1. Thus, Cheng concludes that the tangential

component is always destabilizing in this region. Therefore, the

results of the present analysis do indicate the proper behavior of

this body force component in the nose region of a blunt body.

Further, Cheng points out that any propagating disturb_

ances (c: _ U0) of the Helmholtz type can always be suppressed

by sufficiently increasing the viscosities of the media, regardless

of destabilizing effect of the tangential gravity field. In the

present analysis, the "Helmholtz instabilities t' are expressed in

terms of the Kelvin-Helmholtz mechanism characterized by the

relative velocity (U u- 1). Thus, in the absence of viscosity, this

velocity difference is fixed, and serves only as destabilizing

influence.

Finally, Cheng has indicated that stationary disturbances

#

(Cr = UO) of a Rayleigh-Taylor type may be excited by both the

normal and tangential components of the body force. These

disturbances, however, cannot be eliminated completely, no

matter how large the viscosity. This is the expected behavior for

an unbounded Rayleigh-Taylor situation. Only the introduction of

a cutoff wave number, above which all disturbances are damped,
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can stabilize such a situation. Cheng thus concludes that it is

these latter stationary disturbances which are of the most concern

in the flow instabilities relevant to the problem of melting ablation.

In the present analysis, no distinction between the two types of

disturbances considered by Cheng can be made. The reason is

that Cheng's reference velocity is a uniquely defined interface

velocity which is not available herein. Recall, however, that for

very small wavelengths the disturbances were shown to be

essentially stationary with respect to the fluid layer. Unfortunate-

ly, this latter result cannot be used as a basis for comparison

with Cheng's conclusions.
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CHAPTER VI

SUMhiAR Y AND C ONC LUSIONS

The interracial stability problem of two parallel super-

posed inviscid fluid streams has been studied with the purpose of

determining the effect of a body force component tangential to the

flow direction. In seeking this effect, other stabilizing and

destabilizing influences, such as surface tension, density

stratification, a relative interface velocity, a lower bounding wall,

and a perpendicular body force component, have been analyzed.

The linearized normal mode theory was used for the

stability analysis. This theory yielded a boundary-value problem

consisting of two second-order ordinary differential equations

subject to homogeneous boundary conditions and to a single inter-

face condition. In arriving at these results, it was necessary to

assume that the pressure gradient in the flow direction could be

neglected in local regions of interest. This assumption was later

used to show that the wavelengths of the allowed disturbances must

be small compared with the length characteristic of a pressure

difference in the flow direction. The result following from solution

of the boundary-value problem was a dispersion relation (3-29)

between the complex phase velocity and the wave number of the

-76 -
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disturbances. Several dimensionless parameters, characterizing

the effects of the body force components, surface tension, the

relative interface velocity, and the density ratio, appear within

the dispersion relation. These parameters are later used to

determine the relative stabilizing or destabilizing influence of the

associated physical mechanisms.

The transcendental nature of the dispersion relation (3-29)

made a completely general analytical result impossible. After

making several well-justified simplifications, the influence of the

important parameters was distinguished. By studying first the

case with zero tangential component of the body force, the perpen-

dicular component was shown to be stabilizing or destabilizing

depending on whether it was directed toward or away from the

heavier fluid. Also, when this perpendicular component is

directed away from the heavier fluid, the effect of density strati-

fication of that fluid is to enhance the already present instability

(due to the discontinuity in density at the interface). Conversely,

if the direction of this force is reversed, stratification acts as a

stabilizing influence. The effects of a bounding wall on the lower

fluid and of surface tension at the interface were found to be

always stabilizing. Most importantly, the velocity discontinuity
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at the interface implied the always destabilizing Kelvin-Helmholtz

mechanism which is characterized by the magnitude of the

relative interface velocity. Amplification rates for the several

unstable situations were determined as functions of the dimension-

less parameters associated with the above-named effects.

In studying the more general case including a non-zero

tangential component of the body force, it was shown that this

component is always destabilizing. This result was found to be

independent of the assumed directional sense of the tangential

component. Also, a cutoff wave number was shown to exist,

above which disturbances are destabilized only because of the

presence of the tangential body force. The effects of surface

tension, the perpendicular body force, and the relative interface

velocity do, however, play a role in determining the amplification

rates associated with such disturbances. For those disturbances

below the cutoff wave number, as "inherent instability" occurs as

a result of the Kelvin-Helrnholtz mechanism described for the

case of zero tangential body force component. The tangential com-

ponent was then found to act as a further destabilizing mechanism.

Again, amplification rates for these relevant cases were deter-

mine d.
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Hence, the present work has been able to show some

significant features affecting the stability of the generalized

Ke!vin-Heln_.holtz model assumed. Relative stabilizing and

destabilizing influences have been delineated, and a certain

understanding of the importance of the several physical mecha-

nisms involved was achieved.
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